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change in the g value of a radical as a function of counterion 
concentration and requires the generation of the "free" radical 
when the concentration of the counterion is zero. The use of 
EPR g values for the determination of equilibrium constants 
has also been demonstrated for solvent exchange equilib­
ria.11 

To date, similar information for cation radical ion pairs has 
not been available owing to the limited experimental obser­
vation of such species.' 2~'5 Romans et al.12 first reported a g 
shift as a function of solvent for the tetramethylhydrazine 
cation radical produced by iodine oxidation which they at-
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tributed to a cation radical-halide ion interaction. Sorensen 
and Bruning13 measured the rates of electron transfer between 
radical cations and their parent molecules for phenothiazine 
(PTH) and tri-/?-tolylamine and observed a dependence of the 
rate on the dielectric constant of the solvent mixture. This was 
attributed to ion pairing between the organic cation and the 
inorganic anion. Fajer et al.14 observed halide ion splittings in 
some metalloporphyrin cation radical EPR spectra in solvents 
of low dielectric constant. This observation is probably more 
consistent with a complex formation between the cation radical 
and the halide anion rather than ion-pair formation. More 
recently, Goez-Morales and Sullivan15 observed large shifts 
in the g value caused by halide ion interaction with the 
1,2,4,5-tetramethoxybenzene (TMB) cation radical. 

Because of the growing recognition of the importance of 
cation radicals as intermediates in many oxidation processes,16 

it is of fundamental interest to evaluate, if possible, the ther­
modynamic parameters controlling the dissociation of cation 
radical ion pairs. It seemed most appropriate to begin these 
studies with the TMB cation radical-halide anion ion pair 
system owing to the large g shift observed as a function of 
halide ion concentration.15 This suggested that the use of 
Stevenson's g-value method for determining equilibrium 
constants might be applicable to this system. In this paper we 
wish to report the results of our experiments which have al­
lowed us to determine for the first time an equilibrium constant 
for the dissociation of a cation radical ion pair (/3) into a sol-
vat ed ("free") cation radical (a) and a solvated anion: 

f3^a + X~ (1) 

Experimental Section 

1,2,4,5-Tetramethoxybenzene (TMB) was obtained as described 
previously.15 Phenothiazine (PTH), 2,3,6,7-tetramethoxythian-
threne (TMTH), 9,10-dimethoxyanthracene (9,10-DMA), 1,4-
dimethoxyanthracene (1,4-DMA), iodine, alkali metal iodides, and 
nitromethane were obtained commercially and used without further 
purification. The iodides were dried in a vacuum oven at 100 0C for 
72 h prior to use. Nitromethane was dried over molecular sieves and 
carefully degassed by repeated freeze-pump-thaw cycles before use. 
Solutions of triiodides were prepared by dissolving equimolar amounts 
of h and the metal iodides in nitromethane.17 

The oxidations were carried out in the following manner. A 0.010 
M TMB solution (0.30 mL) was placed in one arm of an inverted 
U-tube (the other arm being drawn into a capillary tube) to which was 
added a trace of AlCl3. The characteristic color of the TMB cation 
radical was then observed. The total volume was made up to 0.60 mL 
with varying amounts of the triiodide solution and pure nitromethane. 
This yielded a series of solutions with a constant concentration of 
TMB, but varying I3

- concentrations. The resulting solution was then 
evacuated and degassed and transferred to the capillary tube which 
was placed in the EPR cavity at —20 0C. This temperature was used 
to ensure the stability of the cation radical. The EPR spectra were 
recorded on a Varian E-15, X-band spectrometer. The g factors were 
measured in a dual sample cavity as described previously,15 using the 
perylene anion radical (g = 2.002 671 ± 0.000 003)'8 as a secondary 
standard. 

Results 

Addition of Nal3 solution while maintaining the TMB 
concentration constant results in a gradual increase of the 
observed g value as shown in Table I and Figure 1. This g-value 
shift can be interpreted in terms of an equilibrium between the 
cation radical ion pair (/3) and the "free" cation radical (a) and 
a solvated anion (eq 1), if several assumptions are made. First, 
it is assumed that AlCl3-oxidized TMB results in the produc­
tion of a "free" cation radical (see Discussion section). Second, 
the time between ion association and dissociation is assumed 
fast on the EPR time scale. The observed g shift (Af) is then 
a weighted average of the g shift of the ion-paired species (Ag') 
and that of the free ion (which would be zero). Using the 
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Figure 1. Plot of 1 /Sg vs. 1/[I3"] for TMB+-I3-. 

Table I. g Shifts as a Function of the I3 Concentration for the 
TMB/A1C13 System" 

I3", MX 103 

2.07 
2.17 
3.47 
4.15 

SgX 105 

4.1* 
4.5 
7.3 
7.4 

I3-, MX 103 

4.33 
5.42 
6.50 
6.74 

SgX 105 

8.0 
9.8 

10.5 
10.9 

" Only some representative points are given. b Sg = gobsd — gfr 
where gfree = 2.003 959. 

two-jump model, the following expression has been de­
rived:10 

\/Sg=(Kd/Ag'[h-]) + \/Ag' (2) 

where Kd = (a)[I3-]/(/3). A plot of I/Ag vs. 1/[I3
-] should 

be linear and have a slope of Kd/Ag' and an intercept of \/Ag'. 
As can be seen from Figure 1, our data do yield a straight line 
from which the dissociation constant was calculated to be (1.54 
± 0.16) X 10 - 2 at - 2 0 0 C. In order to eliminate the possibility 
that NaI 3 is ion paired in nitromethane the whole series of al­
kali triiodides and ammonium triiodide were examined in the 
same way yielding the results shown in Table II. 

Similar experiments were also carried out with several other 
cation radicals. Phenothiazine cation radical (PTH+-), which 
has previously been suggested to form ion pairs with I 3

- in 
mixed solvent systems,13 showed similar g shifts to those of 
TMB. A plot of 1/AJ vs. 1/[I3

-] was linear (see Figure 2) and 
a dissociation constant of (9.7 ± 2.0) X 10 - 2 at - 2 0 0 C was 
obtained. 1,4-DMA+- also showed g shifts on interaction with 
I 3

- and from the plotted data (Figure 3) a dissociation constant 
of (4.08 ± 1.17) X 10-2 at - 2 0 0 C was evaluated. 9,10-
DMA+- and TMTH+- were also investigated but did not show 
any shift in g values on addition of I 3

- . 

Discussion 

Free Ion-Ion Pair Equilibria. In the above analysis it was 
assumed that the equilibrium being measured was between the 
"free" ion and an ion-paired species. The "free" ion is assumed 
to be formed when TMB is oxidized by AlCl3 in nitromethane. 
Although it must be noted that the nature of the counteranion 
is not known in AlCl3-oxidized systems,16 no effects directly 
attributable to the formation of ion pairs have ever been ob­
served in such systems.19 Additionally, the method of prepa­
ration of TMB+- involved the use of only a trace of AlCl3, thus 
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Table II. Dissociation Constant for TMB+-/I3
_ as a Function of 

Added Salt 

salt KdX 102 

LiI3 

NaI3 

KI3 

RbI3 

CsI3 

NH4I3 

>10 
1.56 ±0.16" 
2.76 ±0.88 
0.95 ±0.19 
2.22 ±0.29 
1.93 ±0.19 

" Errors represent standard deviation of least-squares fit. 

1/[U] 
Figure 2. Plot of \/Sg vs. 1/[I3"] for PTH+-I 

2 6.0 

< 4.0 

20.0 40.0 

• / [ • ; ] 
Figure 3. Plot of I /Sg vs. 1/[I3"] for 1,4-DMA+-Ir 

creating an extremely dilute solution. In a highly polar solvent 
such as nitromethane this should result in a shift of the ion-pair 
equilibrium, if it exists, toward "free" ions. This contention 
is further supported by some recent work on the dissociation 
of trityl cation ion pairs which indicated that essentially "free" 
ions exist in dilute solutions in nitromethane.20 

It is true that many inorganic salts are ion paired in nitro­
methane21 '24 and this has been attributed to the low donor 
number of the solvent (2.7).21 However, it has been suggested 
that in general the triiodide salts behave as strong electrolytes 
in nonaqueous solvents.25 Further, the conductance of 
tetramethylammonium triiodide in nitromethane has been 
studied by Walden and Birr27 and their results were in good 
agreement with the Onsager theory. However, Popov and 
Baum24 recently suggested that a certain degree of ion pairing 
may exist for lithium triiodide in nitromethane. 

Figure 4. Possible structures of TMB+- ion pairs. 

Table II shows the results for the dissociation constants of 
the TMB+-/I 3 - ion pair in nitromethane as a function of the 
countercation. All the values are very similar except for LiI3. 
The constancy of Kd with countercation is consistent with the 
hypothesis that the triiodides are essentially completely dis­
sociated in nitromethane.25-26 The LiI3 result is in accord with 
the suggestion of Popov24 that this salt exhibits a degree of ion 
pairing in nitromethane. 

The measured dissociation constants of the cation radical 
ion pairs are also of the same order of magnitude as those 
measured for anion radical ion pairs. For example, K^ = (7.6 
± 0.9) X l O - 1 for the potassium, 2,6-di-7ert-butylsemiquinone 
anion ion pair in hexamethylphosphoramide.10 

The possibility that other equilibria such as disproportion-
ation of the radical cations might be coupled to the ion-pair 
dissociation was also considered.28 There are not many docu­
mented examples of disproportionation constants for cation 
radicals; however, those that have been measured are generally 
very small29"31 (e.g., thianthrene cation radical ATdisp = 2.3 X 
1O-9), thus suggesting that this equilibrium is probably not 
likely to affect the ion-pairing equilibrium. 

For the above reasons we believe that the measured disso­
ciation constants do indeed represent the dissociation of an ion 
pair into a free cation radical and a halide anion.32 

Structure of the Ion Pair. Several observations of this work 
and our previous work15 have implications with regard to the 
structure of the cation radical-halide anion ion pair. Previously 
it has been proposed12'15 that the mechanism of oxidation of 
TMB by I2 involves the formation of a charge transfer complex 
between I2 and TMB (eq 3) which then reacts with another I2 

molecule forming the TMB cation radical and I 3
- ion (eq 4). 

This species is subsequently solvated (eq 5). 

T M B - I - I 2 ^ T M B - I 2 (3) 

TMB-I2 + I2 <=> TMB + - I 3 - + I- (4) 

TMB+ - I 3 - + S(solvent) ^ TMB+-(solv) + I3-(solv) (5) 

Thus the observed g shifts were attributed15 to the interaction 
of I 3

- and TMB+-. The addition of NaI to TMB-I 2 mixtures 
resulted in an increased g shift due to the increased concen­
tration of I 3- caused by reaction 6. 

I- + I2 I3 (6) 

By contrast, as part of our present study NaI was added to 
AlCl3-oxidized TMB solutions, and no shift in the g value of 
TMB+- was observed. This can be taken as further support for 
the idea that I 3

- is the counteranion in the I2-oxidized TMB 
solutions. However, it is perhaps somewhat surprising that I - , 
being a smaller anion with a more localized charge density, 
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does not show any manifestation of ion-pair formation in terms 
of an observable g shift. This can be rationalized by considering 
the orbital symmetries of the cation and anion and the possible 
structures of the ion pair. The highest occupied molecular or­
bital (HOMO) of TMB, from which one electron is removed 
to form TMB+-, has a nodal plane passing through carbons 3 
and 6 (Figure 4a). If the ion pair with I - has a structure in 
which the counteranion is placed on the yz nodal plane (such 
as Figure 4a) or in which the anion vibrates symmetrically with 
respect to this plane, there will be no net overlap between the 
p orbitals on I - and the TT orbital of TMB+ - and hence no ob­
servable g shift. If the ion pair were to have a structure in which 
the anion is located away from the yz plane (for example, 
Figure 4b) an appreciable overlap between the HOMO of 
TMB+- and appropriate p orbitals on I - could produce an 
observable g shift. The lack of an experimentally observed g 
shift is therefore consistent with ion-pair formation between 
TMB+- and I - if the structure of the ion pair is similar to 
Figure 4a. 

If the TMB+- and I 3 - ion pair were to have a structure 
analogous to the TMB+- I - ion pair (i.e., Figure 4c),33 the 
observed g shift could be explained. Overlap between the 
nonbonding p orbitals of the terminal iodine atoms of appro­
priate symmetry with the HOMO of TMB+- could result in 
a net transfer of electron density from I3 - to TMB+-. Thus the 
excited-state TMB !3- would mix with the ground-state TMB+-
I3 - resulting in a large g shift. 

The similar interactions noted for 1,4-DMA+- and PTH+-
with I 3

- and the lack of interaction observed for TMTH+- and 
9,10-DMA+- may also be related to the structure of the ion 
pairs. Further work on the effect of ion-pair structure on the 
magnitude of the g shift and on the effect of solvent on the 
equilibrium constant are currently underway. 
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the choice of the underlying basic approach—mostly transi­
tion-state theory (TST)1 '2,9 ' '0—and reaction system—mostly 
H + H2—there arise some problems that must be considered 
carefully in assessment of the utility of the tunnelling correc­
tions. Among the points of interest in this respect are the choice 
of a correct potential surface when comparing with experi-
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Abstract: For reactions of Mu, H, D, or T with F2 or CI2, mathematically one-dimensional unsymmetric Eckart barrier per­
meabilities calculated within the vibrationally adiabatic model agree extremely well with exact quantum collinear reaction 
probabilities using extended LEPS surfaces. The corresponding rate constants and activation energies, in the temperature in­
terval 230-900 K, are also in very good agreement. Other approximations, e.g., the parabolic barrier, have also been tested but 
are found to be less suitable. In particular, assumption of conservation of vibrational energy leads to considerable errors. 
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